Mark Scheme - AS 1.7 Equilibria and Acid-base Reactions

1.	(a)	Benefits: Stops fossil fuels from running out Reduces CO ₂ emissions / greenhouse emissions / global warming / effect of global warming Reduces SO ₂ emissions / acid rain There will be an investment in new technology			
		Difficulties: Dependence on fossil fuel/Unlikely to meet current demand Renewable energy currently more expensive Reliability of supply from renewables Major development in energy efficiency technologies required Opposition by vested interests (Maximum3 marks from list, but need examples of both) (3)			
		Consideration and discussion of benefits/difficulties (1)	4]		
		QWC Legibility of text; accuracy of spelling, punctuation and grammar, clar of meaning	rity [1]		
	(b)	(i) I As temperature increases yield decreases As pressure increases yield decreases [[1]		
		QWC The information is organised clearly and coherently, usin	[4] 19 [1]		
		(ii) If temperature is too low, then reaction is too slow (1) If temperature is too high, yield is too low (1) Compromise temperature – acceptable rate and yield (1) (Accept any two points)	2]		
			1]		
		(iv) Lower temperatures could be used (1) Less energy consumption/increased yield (1) Equilibrium could be reached more quickly (1)	[2]		
		(v) Energy]		
		Extent o freaction			
		(vi) $\Delta H = E_r - E_{o}$ [1]		
		Total [1			
		Total	-1		

- (a reaction in which) the rate of the forward reaction is equal to the rate of the backward reaction
- (b) goes darker / more brown (1)

because the (forward) reaction has a +ve ΔH / is endothermic (1)

goes paler / less brown (1)

because there are more moles / molecules on RHS (1)

no change (because catalysts do not affect the position of an equilibrium) (1) [5]

(C)	(i)	moles $N_2H_4 = 14000/32.04 = 437.0$ (1)	
		this produces $437.0 \times 3 = 1311$ moles of gas (1)	
		volume = $1311 \times 24 = 3.15 \times 10^4 \text{ dm}^3$ (1) [minimum 2 sf]	[3]
	(ii)	(large volume of) gas produce	[1]
(d)	(i)	an acid is a proten / H+ donor	[1]
	<mark>(ii)</mark>	$\rightarrow NO_2^- + H_3O^+$	[1]
	(iii)	sulfuric acid is behaving as the acid / nitric acid is behaving as a base (1)	
		as it donates a proton / as it accepts a proton (1)	[2]

Total [14]

[1]

(a)	(i)	I burette / (graduated) pipette	[1]
		II volumetric / graduated / standard flask	[1]
	(ii)	0.0064	[1]
	(iii)	1.20 g / 100 cm ³ solution	[1]
	(iv)	12.0 g / 100 cm ³ solution	[1]

(b)	(i)	The rate of the forward reaction is equal to the rate of the backward		
		reaction.	[1]	
	(ii)	C ₂ H ₄ O	[1]	

Acid: Proton donor (1)

Dynamic equilibrium: Reversible reaction where the **rate** of forward and reverse reactions is equal (1) [2]

 (a) Name of any commercially/ industrially important chlorine containing compound e.g. (sodium) chlorate(I) as bleach/ (sodium) chlorate(V) as weedkiller/ aluminium chloride as catalyst in halogenation

(b)	(i)	$K_{\rm c} = [\rm HI]^2$	must be square brackets	[1]
		[H ₂][I ₂]		

(ii)
$$K_c = \frac{0.11^2}{3.11^2} = 1.25 \times 10^{-3}$$
 follow through error (ft) [1]

(iii)
$$K_{\rm c}$$
 has no units ft [1]

(iv) when temperature increases K_c increases (1)

this means equilibrium has moved to RHS / increasing temperature favours endothermic reaction (1)

therefore ∆H for forward reaction is +ve (1)	
(mark only awarded if marking point 2 given)	[3]

	(i)	Cold Cl ₂ + 2NaOH NaCl + NaCl + H	H ₂ O	(1)	
(a)		Warm 3Cl ₂ + 6NaOH 5NaCl + NaClO ₃ -	+ 3H ₂ O	(1)	
				[2]	
	(ii)	Disproportionation		[1]	
	(i)	$K_{c} = [CH_{3}COOCH_{3}][H_{2}O]$ $[CH_{3}COOH][CH_{3}OH]$	(1)		
		No units	(1)		[2]
(b)	(ii)	moles = $\frac{1.25 \times 32.0}{1000} = 0.04(0)$			[1]
	(iii)	$[CH_3COOH] = 0.04$, therefore 0.06 used in reaction	and		
		$[CH_3COOCH_3] = 0.06, [H_2O] = 0.06$ and			
		$[CH_3OH] = 0.083 - 0.06 = 0.023$	(1)		
		$K_{c} = \frac{0.06 \times 0.06}{0.04 \times 0.023} = 3.91$	(1)		[2]
	(iv)	Value of K_c decreases since the equilibrium shifts to	o the left	1	
		the forward reaction is exothermic			[1]

1	2	1	
	o	IJ	

	1	2	3	4	
Volume used / cm ³	20.75	20.20	20.10	20.30	
					[1

(b) 20.20 cm³

[1]

8.	(a) (i) $K_p = \frac{pSO_3(g) \times pNO(g)}{pSO_2(g) \times pNO_2(g)}$ (1) there are no units (1)	[2]
	(11	 The line for SO₃ / NO at equilibrium should be above the SO₂ / NO₂ line (1) as K_p has a value of 2.5, the partial pressures of SO₃ and NO at equilibrium will be greater than the partial pressures of SO₂ and NO₂. (1) - accept answer in terms alternative calculated K 	
		The line for equilibrium should start at 9 hours. (1) as at equilibrium the concentrations is unchanged as time progresses. (1)	[4]
		There may be other acceptable forms of explanation to be discussed at the conference	
	(iii)	If the temperature rises then the position of equilibrium will move to the left, (reducing the quantities of SO_3 and NO). (1)	[2]
	1210 7122	This will make the value of K_p smaller. (1)	[2]
	(b) (i)	Nitric acid is a strong acid and its pH is low / <2 / 1.0 (1) As aqueous ammonia is added the pH slowly rises (1) until a pH of ~3 is reached, when it rises rapidly (1) At a pH of 8-9, it tails off slowly as ammonia is a weak base. (1)	
		Accept any 3 from 4	[3]
		Selection of a form and style of writing which is appropriate to purpose and to complexity of subject matter	[1]
	(ii)	The equivalence point is reached when 20.0 cm^3 of ammonia solution has been added as this is at the mid point of the more vertical section. (1)	đ
		Since both reagents have the same concentration and the volumes used are both 20 cm the same, the number of moles of each are the same (1)	n ³ /
		OR the number of moles of both nitric acid and aqueous ammonia are calculated (0. and shown to be the same (1)	0020)
		\therefore Mole ratio must be 1 : 1 (1)	[2]
	(iii)	 I Ammonium nitrate is the salt of a strong acid and weak base / there is a buffering in operation. II ~ 6.4 	effect [1] [1]
	(iv)	Blue, as bromophenol blue is blue at a pH of 4.7 and above	[1]
	(c)	Number of moles of ammonium nitrate $=\frac{40}{80} = 0.50$ (1)	
		- error carried forward Concentration of ammonium nitrate solution = $\frac{0.5 \times 1000}{200}$ = 2.5 mol dm ⁻³	(1)
		\therefore Temperature drop = $2.5 \times 6.2 = 15.5^{\circ}$ C (1)	[3]
		Total	[20]

(a)	x = 1	D		[1]
(b)	(i)	number of moles = 250 x	0.200 ÷ 1000 = 0.05 mol (1) – ft	
			e = 0.05 x <i>M</i> _r (Na₂CO₃) = 0.05 x 286.2 4.31g (1)	[2]
	(ii)	any two points from:		
		weigh by difference (1)		
		add less water initially (1)		
		wash out beaker / glass ro	od / funnel and put water into volumetric flask (1)	2
		add water up to mark in vo - 2 r	olumetric flask (1) max	[2]
(c)	add f	ew drops of indicator (1)	do not accept 'universal indicator'	
	take i	nitial and final reading on bu	urette (1)	
	swirl	the conical flask (1)		
	add a	acid until the indicator chang	es colour (1)	[4]
		: organisation of information e appropriate.	n clearly and coherently; use of specialist vocabu	lary QWC <mark>[1]</mark>
			т	otal [10]

(a)
$$K_w = [H^+][OH^-]$$
 (1)
Units = mol² dm⁻⁶ (1) [2]
(b) (i) In pure water [H⁺] = [OH⁻] or [H⁺] = $\sqrt{1.0 \times 10^{-14}}$ (1)
 $pH = -\log 10^{-7} = 7$ (1) [2]
(ii) Final volume of solution is 1000 cm³ so acid has been diluted by a
factor of 100 so final concentration of acid is 0.001
or moles acid = $0.1 \times 10 = 0.001$ (1)
 $pH = -\log 0.001 = 3$ (1) [2]
(c) $1.78 \times 10^{-5} = [\frac{H^+] \times 0.02}{0.01}$ (1)
 $[H^+] = 8.90 \times 10^{-6}$ (1)
 $pH = 5.05$ allow 5 or 5.1 (1) [3]
(d) The solution is a buffer (1)
Solution contains a large amount of CH₃COOH and CH₃COO⁻ ions
(Accept correct equations) (1)
When an acid is added, the CH₃COO⁻ ions react with the H⁺ ions, removing
them from solution and keeping the pH constant (1) [3]

11.	(a)	an aci	id is a proton / H ⁺ donor	[1]			
	(b)	р Н = -	-log[H ⁺] / negative log of hydrogen ion concentration	[1]			
	(C)	a low	pH corresponds to a high concentration of H ⁺ (1)				
		a stro	a strong acid is totally dissociated whilst a weak acid is partially dissociated (1)				
		need	need to consider concentration (of acid solution) as well as strength of the acid (1)				
			a concentrated solution of a weak acid could have a lower pH than a dilute solution of strong acid (1)				
		QWC	Accuracy of spelling, punctuation and grammar	QWC [1]			
	(d)	(i)	$K_{a} = \frac{[HCOO^{-}][H^{+}]}{[HCOOH]}$	[1]			
		(ii)	$1.75 \times 10^{-4} = \frac{x^2}{0.1}$ (1)				
			$x = 4.183 \times 10^{-3} (1)$				
			pH = 2.38 (1)	[3]			
	(e)	(i)	buffer	[1]			
		(ii)	RCOOH \rightleftharpoons RCOO ⁻ + H ⁺ and RCOONa → RCOO ⁻ + Na ⁺ (1)				
			added H^+ removed by salt anion/ A^- + $H^+ \rightarrow HA(1)$				
			added OH ⁻ removed by acid/ OH ⁻ + HA \rightarrow A ⁻ + H ₂ O (1)	[3]			
				Total [15]			

(a)	(dissociates to) release H ⁺ ions	[1]
(b)	2.5-6.0	[1]